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In this paper we view the landscape of analytic models for
computer network performance evaluation. We present the basics
of network analysis, discuss the network design procedure, and
introduce some of the fundamentals of network control. Finally, we
present some of the issues surrounding the design and behavior of
gigabit networks.

1. INTRODUCTION AND APOLOGY

Can you predict the way a network will perform? Can you
do it easily, exactly, correctly? Indeed, what metrics should
you use to evaluate performance? These are the kinds of
questions a network analyst asks himself all the time.

The fact is, there are a number of ways in which you
can go about doing network system performance analysis.
In order of increasing ugliness, they are as follows:

1) Conduct a mathematical analysis which yields ex-
plicit performance expressions.

2) Conduct a mathematical analysis which yields an
algorithmic or numerical evaluation procedure.

3) Write and run a simulation.

4) Build the system and then measure its performance!

Occasionally we are lucky enough to develop the first type
of solution. Let us discuss this case. The fact is that we
often work rather hard at trying to solve the mathematical
model we develop. Indeed, we often “fall in love” with our
mathematical model and assume that our careers depend
upon providing an exact solution to the model generated.
However, it must be recognized that our mathematical
models never do an exact job in representing the actual
network being analyzed. Thus we always end up with an
approximation, even if our analysis is exact. Sometimes, all
we can do is to provide an approximate solution to our
mathematical model; this often takes cleverness on the part
of the analyst. A different approach, and one which is often
overlooked is to generate a different (and possibly more
approximate) mathematical model whose solution may be
more tractable than for our original model. It is important
for the analyst to recognize that this is a perfectly legitimate
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approach to consider. After all, the final test of our analysis
is when we compare its predictions to actual measurements
of the real network. Only if the predictions are within an
acceptable tolerance can we claim to have done our job as
analysts.

In this paper, we will concentrate on the use of such
mathematical models of network performance. Of necessity
we will be making approximations in a variety of ways.

1I. THE EARLY NETWORK ANALYSIS MODELS

The first models of computer networks were developed
in the early 1960’s [1] ,[2]. However, it was not until the
late 1960’s when the United States Department of Defense
Advanced Research Projects Agency (DARPA) funded the
development of the ARPANET that serious effort began in
this area. Indeed, it was the infusion of a relatively small
amount of government money and a large amount of vision
in funding network research that propelled the entire field of
networking and packet switching forward and produced the
extensive analytical work and physical networks in which
we find ourselves swimming today.

One of the first general results was an exact expression
for the mean delay experienced by a message as it passed
through a network. The evaluation of this delay required
the introduction of an assumption (the author’s Indepen-
dence Assumption) without which the analysis remains
intractable, and with which the analysis becomes quite
straightforward. Let us begin our journey through the
analytical thread with this model [1]. Consider the network
shown in Fig. .

Here we see a network in which we assume there are
N nodes corresponding to the network switches and in
which we assume there are M links corresponding to
data channels connecting the switches. We assume that
messages arrive from a Poisson process at origin node j
and headed for destination node k at a rate -y;x; that is,
the variables ;i correspond to the entries in the network
traffic matrix. Furthermore, we assume that the messages
are exponentially distributed with mean length 1/p bits per
message. In Fig. 2 we show a detailed view of a node in
the network.
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Fig. 1. Model of a computer network.

INTERNAL STRUCTURE OF A NODE

Fig. 2. Detailed view of a network switching node.

Since each channel is, in fact, a full-duplex channel, we
choose to represent a channel as two simplex channels.
Thus we see there are three ways in and three ways out of
the node shown (for the moment, we ignore any attached
hosts). Now, when a message arrives to such a node, a
routing decision must somehow be made which determines
over which outgoing channel the message will travel next.
Once this decision is made, the message is placed on the
tail of a queue of other messages waiting to be transmitted
out over this channel (say channel ¢). In the figure we have
identified a queueing system consisting of such a queue
and its corresponding channel. We denote by A; the traffic
carried on this channel (in messages per second) and we
let C; be the capacity of this channel (bits per second). In
addition, we let T; be the mean response time of this little
queueing system.

Let us also define some global quantities. First, we define
the total (external) traffic carried by the network as

N
v=> vk (1

J.k=1

and the total (internal) network traffic carried by the chan-
nels as

A=) @

Moreover, if we let 70 be the average number of hops that
a message must take in its journey through the network
(averaged over all origin-destination pairs), then it is easy
to show that the following is true [1]:

=AYy 3)

Lastly, and most importantly, we define T to be the
mean delay of all messages (again, averaged over all
origin—destination pairs). T is the mean response time of
the network and is one of the most important performance
variables for a network. It can easily be seen (by two
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applications of Little’s result [3]) that [1]

M
>
i=1

This is an exact equation and is an important general result
for networks of all sorts.

The only difficulty with this last equation is that we have
not given an explicit expression for 7;. In general, this
turns out to be an insurmountable problem. It is probably
true that we will never be able to give a tractable expression
for T;! This may come as a surprise to those familiar with
queueing networks; indeed, it appears that we have set up
a perfect Jackson open queueing network whose solution is
simple and well-known [4]. The problem comes from the
fact that a key assumption in queueing network theory is
that the “service time” experienced by a “customer” in any
node of the network is independent of all service times of
all customers in all nodes. Our problem comes about since
the “service time” a customer (the message) requires from
the server (the channel) is simply transmission. Now it is
clear that the time it takes to transmit a message over one
channel is exactly the time it will take to transmit that same
message over a different channel of the same capacity. This
generates a major dependence among the successive service
times seen by a message as it makes its way through the
network. In fact, this also creates a dependency among the
interarrival and service times seen by a message at a given
node. It turns out that this causes grief beyond belief in the
analysis. Indeed, the case of two nodes in tandem where
the channel capacity of each of the two attached channels
is identical was solved (many years after this problem was
first posed in [1]) by Boxma [5], and that solution was
extremely messy.

It turns out that if we change the model to one which is,
in fact, more representative of data traffic, then we can give
an exact solution for a restricted topology. The modification
is to assume that the message lengths are all the same
(rather than the exponential assumption above) and that the
topology is a tandem network; in this case, Rubin [6] was
able to give an exact solution for the response time when
all traffic enters at one end of the tandem and exits at the
other end. Unfortunately, the analysis does not extend to
the case of nontandem networks.

Let us now return to our original model using expo-
nentially distributed message lengths. As mentioned above,
extreme analytical difficulty comes from the dependence
among message service and interarrival times. The Inde-
pendence Assumption assumes that the length of a message
is chosen independently from the exponential distribution
each time it enters a switching node in the computer
network! This is clearly a sweeping assumption which is
patently false; however, it turns out (from measurements
and simulation) that this assumption has a negligible effect
on the mean message delay. AND, if we do make the
assumption, then our analysis becomes trivial since we will
have then reduced the system to a Jackson open queueing
network model.
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If we make the Independence Assumption, then the
expression for 7; for the ith queueing system shown in
Fig. 2 reduces to an M/M/1 queueing system [4] whose
solution is simply

1
Ti=———
uC; — A

Note that uC; is the capacity of the ith channel expressed
in messages per second. When we substitute this into (4),
we end up with an explicit and simple expression for the
mean message delay T as follows:

r= Z =) ©

This equation is very effective for design calculations as
we shall see below. However, it ignores certain realities
which become important when one wishes to give a more
precise prediction of network delay. For example, we have
assumed K = 0 and P; = 0 (where K = nodal processing
time and P; = propagation delay). When we come to apply
this analysis to any realistic network, we must include these
variables as well as other considerations. Specifically, not
only is there message traffic moving through the network,
but there is also a certain amount of control traffic. The
basic M/M/1 result gives the message delay of the true
message traffic for a single channel; of course, this delay
is composed of two quantities, namely, a waiting time on
queue and a service time. The service time has an average
value related to the average length of the true data traffic;
the waiting time, however, is due to the interference of all
other traffic in the network and is composed partly of data
traffic and partly of control traffic. Therefore, it behooves
us to separate these two contributions to delay and to use
the appropriate parameters for each. If we let 1/u denote the
average length of a data packet and if we let 1/u represent
the average length of all packets, then we see that a more
accurate expression for T; is

_ /\i/;l/C,' 1
RNTIOEDY
Of course, if we set u' = p, this will reduce to (5). If
we now account for the nodal processing time K and the

channel propagation time FP; we may then write down the
following approximation for the average message delay:

T = K+Z [’\/“C

5

)

'Ci = X\ C' ®

The term in square brackets is just our new expression for
T; and the additional term K comes from the fact that
messages pass through one more node than they do channels
in their travels through the network. Note that in the case
K = P, =0 and p' = p the expression is reduced to our
basic expression in (6).

From this delay analysis we may predict quantitative as
well as phenomenological behavior of the average message
delay in networks. In particular, if we assume a relatively
homogeneous set of C; and );, then as we increase the load
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Fig. 3. The threshold behavior of average network delay.

on the network, no individual term in the sum for delay as
given in (4) will dominate the summation until the flow in
one channel (say channel i,) approaches the capacity of that
channel; this channel corresponds to the network bottleneck.
At that point, the term 7;_, and hence T, will grow rapidly.
The expression for delay will then be dominated by this
term and T will exhibit a threshold behavior; prior to this
threshold, T' remains relatively constant and as we approach
the threshold, T' will suddenly grow. Thus we expect an
average delay in networks that has a much sharper behavior
than the average M/M/1 delay.

This threshold behavior suggests a simplified determin-
istic (that is, fluid flow) model for delay in computer
networks. The essence of the phenomenon is that delay
remains essentially constant up to the critical threshold at
which point the delay grows in an unbounded fashion.
Such a simplification is shown in Fig. 3. In this figure
we represent the delay characteristic in terms of two basic
system parameters. The first parameter, Tp, is the constant
delay experienced by messages so long as the network load
~ is in the stable region (y < 7y*); the second parameter, v*
is the network saturation load at which point T' — oc. Tj is
simply calculated as the “no-load” delay and corresponds to
the delay messages would experience in traveling through
an unloaded network. For example, were we to use (6) as
our model then

M

A 1
To=) ~— ©
-1 Y KC:i

The calculation for v*, the network saturation load, is
quite straightforward. It corresponds to the smallest value
of -y at which some (critical) channel is saturated; in terms
of our earlier notation this is the point at which A;, = uCj,
where i is that critical (bottleneck) channel. Given a fixed
routing procedure, one may simply calculate the set {A;}
for any value of +; one must then examine all the ratios
Ai/pC; and identify ¢ as that channel with the largest such
ratio. Recognize that we are talking about scaling all terms
v,& (and therefore A;) by a common factor. The scaling
factor is now adjusted to force A;; = uCj;,; the value of
throughput ~ at which this occurs is precisely v*.

III. DESIGN ISSUES

Whereas network analysis turns out to be “reasonably”
straightforward, network design is not. In fact, network de-
sign is, in some sense, a “black art.” Indeed, the difficulties
come from a number of directions, including, for example,
the following:

1) Cost is not linear with link capacity.

2) Transmission line tariffs are weird and illogical.
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3) Performance is not linear with load.

4) The number of topologies to consider is enormous.

5) Data are usually missing and/or inaccurate.

The net result is that the solution to network design
is to use heuristic design procedures that cleverly search
over the space of possible topologies using fast evaluation
techniques. The ability to evaluate a candidate design
quickly is key to such a procedure. Fortunately, in Section II
we have given analytical equations for such an evaluation;
as mentioned in Section I, this is the best we can hope
for in speed and simplicity of evaluation. The cleverness of
the topological search procedure is the other key element in
design. Here we are not as fortunate, and a number of such
procedures have been proposed, each with its own “secret”
internal heuristics, special data structures, etc. This is where
the “black art” part of design comes in. For example,
there is the Concave Branch Elimination Method (CBE)
described in [9], [10] and the Cut-Set Saturation Method
(a special case of Branch Exchange described in [8]). We
describe the ideas behind these methods below. But first,
let us set up the problem and discuss some manageable
subproblems.

One way to state the formal design problem is as follows:
Let us assume that we are given the locations of the N
switching nodes. Let us also assume we are given the
elements of the traffic matrix {+;x}. (Of course, it is almost
never the case that these traffic values are known, and even
if they are, they are certain to be time-varying with hour of
day, day of week, week of year, etc. The way the designer
gets around this is usually to assume a uniform traffic matrix
if little is known about the entries, or to use as good an
approximation as possible. Already we begin to see the “ad-
hocness™ of the design method manifest itself.) Our design
task (i.e., the degrees of freedom which the design must
resolve) is to choose a topology, to select the capacity of
the links in this topology, and to design a routing procedure
which will move the traffic along certain paths on the way
from its origins to its destinations.

Our objective is to select these design parameters in a
way which optimizes an objective function while meet-
ing all the system constraints. If we choose to minimize
the mean message delay 7', while meeting a maximum
allowable cost constraint, then the problem becomes:

Design Problem:

Minimize
M
Moy
T Ay
By selecting:  Topology
Channel Capacity Assignment
Routing Procedure
Such that: No more than D dollars are spent

Traffic matrix is satisfied
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That is, we are given D dollars to spend on the chan-
nel capacity assignment according to some given tariff
structure.

The dual version of this problem is to minimize cost
while not exceeding a maximum allowable mean message
delay T\iax, that is,

Dual Design Problem:

Minimize
M
D=Y"di{(C)
i=1
By selecting:  Topology

Channel Capacity Assignment
Routing Procedure

Such that: T < Thax

Traffic matrix is satisfied

Here, the number of dollars required to supply C; units of
channel capacity to the ith channel is denoted by d;(C;),
and is dictated by the tariff being used in the design process.

As stated above, both forms of this design problem
are intractable for a number of reasons. First, the exact
expression for 7; is unavailable in general; we get around
this by using our Independence Assumption which results
in an approximate expression for delay. Second, the number
of topologies to consider is far too large and, in addition,
we are dealing with the infamous multicommodity flow
problem [8]; we get around this by using an appropriate
heuristic (suboptimal) design procedure.

It turns out that there are some simpler subproblems
which can be derived from this general design problem
which are manageable, and which lead us to a heuristic
solution to the general problem. First we consider the

Flow Assignment Problem:

Given: Topology

Channel Capacity Assignment
Minimize
A

1‘:2%%

=1

By selecting: Routing Procedure

Such that: Traffic matrix is satisfied

Note that no cost constraint appears since all the money
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has already been spent on the given channel capacity
assignment. This turns out to be a straightforward mini-
mization problem of a convex function over a convex space.
Solutions to this kind of problem abound in the literature.
One particular solution which works especially well is the
Flow Deviation Method [7], but many others also work
here.
Next let us consider the

Capacity Assignment Problem:

Given: Topology
Routing Procedure
Minimize
)\4
T=Y =T
>3

i=1

By selecting:  Channel Capacity Assignment

Such that: No more than D dollars are spent

Traffic matrix is satisfied

This turns out to be a solvable problem whose difficulty
depends upon the cost function d;(C;). In particular, if the
cost function is linear with capacity, that is, d;(C;) = d;C;,
then the optimal capacity assignment turns out to be the
following [1]:

/\i De /\zdz
Co=t\ g )
14 di E /\]‘d]'

=1

i=1,2---,M (10)

A

: Aid;

D.2D-%" an
=1 K

We note that in this assignment, the ith channel is given its
minimum required capacity (namely, A;/u bits per second,
which is the average traffic it must carry) plus an additional
amount which is proportional to the cost-weighted traffic on
this channel. If this optimal assignment is made, then the
optimized (minimal) mean delay is given by

M 2
Aid;
; (T)] : (12)

If the cost function is not linear, then other methods may
be used as described in [9].

Lastly, let us consider the combination of the last two
subproblems, namely, the

T =

n
uDe
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Capacity and Flow Assignment Problem:

Given: Topology
Minimize

‘T,

2| >

M
-3
=1

By selecting: Channel Capacity Assignment

Routing Procedure

Such that: No more than D dollars are spent

Traffic matrix is satisfied

This turns out to be a much more difficult problem since
we are trying to find the minimum of a concave function
which contains many local minima. One solution to this is
described in [10].

Now, the astute reader will notice that we have been
cheating. Specifically, in all three of the subproblems, we
assumed that someone else carried out the really difficult
task of finding the best topology for us! This is truly the
interesting part of the problem. However, we exonerate
ourselves by noting that in the solution to the Capacity and
Flow Assignment (CFA) subproblem, the topology that we
begin with changes in the course of the solution, and certain
channels are eliminated from the original topology. This
is the essence of the Concave Branch Elimination (CBE)
Method, whose name you now understand. The steps in
the CBE method are, roughly, to begin with any initial
topology, to pick a random initial flow and to carry out
the CFA algorithm. This finds one minimum. We then
repeat with different random flows until we run out of
computational dollars. We then ask our boss for more
money, which, if granted, we expend by beginning with
a different initial topology. We repeat this until our boss
gets stubborn and refuses to fund the project any further.
At this point, we find the “best” of all the topologies we
ended up with and declare this our suboptimal heuristic
solution! Such is the nature of heuristic design.

As it turns out, other design procedures, such as the Cut-
Saturation Method, lead to nearly identical cost/performance
profiles for the suboptimal network designs as shown in
Fig. 4.

Here we are plotting the throughput one can achieve
if one spends the indicated number of dollars; all these
network designs meet the delay constraint T < Tyax.
The interesting thing about this profile is that it clearly
demonstrates that there is an economy of scale in network
design. To see this, imagine that we wish to design a “small”
network, namely, one which supports only a small amount
of throughput. Such a network is shown at point A in the
figure. We note that the slope of a line drawn from the
origin to point A has a slope whose value is simply the
throughput per dollar one can achieve by expending the
number of dollars corresponding to point A. We see that
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Fig. 4: Locus of suboptimal network designs.

the small network has a small slope. On the other hand,
if we design a “large” network such as shown at point B,
then we see that we achieve far more units of throughput
for each dollar spent. Thus we have an economy of scale
in network design.

IV. CONTROL ISSUES

One of the most important considerations in computer
networks is that of control. It is necessary to impose control
procedures on networks for a variety of reasons in a variety
of places with a variety of mechanisms. The two major
forms of control are: routing control and flow control [11]
and [12].

A. Routing Control

The routing control procedure in a network is simply
a decision rule which determines where next to send a
packet as it travels from switching node to switching node;
the control of routing takes place at layer 3 of the 7-layer
architecture.! This control procedure may be distributed or
centratized. and quite a number of different types have been
considered in the literature and in operational networks.

The original ARPANET routing procedure [9] was totally
distributed such that all nodes in the network participated
in the decision process through the periodic exchange of
routing tables. The table in a given node contained estimates
of delay from that node to all others in the net. Upon
receiving a table from a given neighbor, a node would
then estimate the delay from itself to this neighbor and
add this estimate to every entry in that neighbor’s received
table. Having done this for all neighbors. a node would
then select the minimum estimate across all neighbors for
a given destination. and use that delay and that neighbor
as its own estimated delay and routing decision for that
given destination. This process would repeat periodically;
it had the lovely property that it would converge to excellent
paths in an adaptive fashion in the face of changing network
conditions. This ability to adapt was a major benefit which
was present in the early ARPANET and was also adopted
by the Telenet public packet switched network.

The more recent routing procedures in the Internet use a
centralized procedure whereby nodes set a threshold against

"ts appearance at the third layer is the usual place for routing control;

however. it may appear at layer 2 as in the Frame Relay LAPD protocol
which includes a subset of the full routing functionality at layer 2 [13}].
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which changed estimates are compared; once the threshold
is exceeded, that node then floods the network with its
new information, informing every network node of this
change. As a result, every node has the same information
as every other, and so when they all respond to the flood
from a change, they calculate a new routing procedure using
identical databases and arrive at the same routing values.

A centralized routing procedure is sometimes used, as
for example in the early Tymnet data network. In this case,
a special node known as the Supervisor is responsible for
setting up paths for a session to use for its entire discourse
between attached end-user devices. The Supervisor makes a
central calculation, sets up the path, and then allows the two
parties to communicate without further interference. The
calculation is a shortest path calculation based on traffic,
link capacity, and nature of the session.

In the solution to the Flow Assignment Problem of the
previous section (whose solution really solves the routing
control problem analytically), the Flow Deviation (FD)
Method referred to uses a procedure which appeals to one’s
intuition. In particular, it selects which paths a flow should
follow based on a shortest path calculation. The length of
a link, as used in this shortest path calculation, is taken
to be the incremental increase in network delay when an
incremental amount of additional flow is placed on that link.
In particular. the length, /; of the /th channel. given that it
is carrying an amount of flow equal to A,/ is simply
‘ JT _ (,‘ - ( 13)
O /1) AU = N )

e

li

These lengths are used in the shortest path calculation, and
the resulting paths represent the “cheapest™ (i.e., marginally
best for reducing 7') paths to which some of the current
flow can be deviated. One must then determine how much
of the current flow to deviate to these new paths. Once this
is determined. the process may be repeated by recalculat-
ing new lengths using the updated flows. solving a new
shortest-path problem. finding the correct flow to deviate,
and so on. This (FD) iterative procedure continues until an
acceptable performance tolerance is reached. Of course, the
Flow Assignment Problem is posed as a design problem and
1s solved “off-line™ in the design process. However, it may
also be used as the basis for a distributed dynamic (*“on-
line™) routing control procedure as described in [14] and
[15]. In the dynamic case, the link lengths are calculated
locally by each node and used to solve the shortest flow
problem in a distributed fashion repeatedly.

B. Flow Control

We typically have a number of disparate devices attached
to a computer network. As an example. consider the net-
work shown in Fig. 5, where we show only two attached
devices. namely. a slow-speed user terminal and a high-
performance host processor. Now it does not take too much
imagination to see that we face a problem here! These
two devices behave very differently, and since they use
a network between them for connectivity, we may run into
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Fig. 6. Window flow control.

some serious problems. For example, one certainly does
not want to interrupt the operating system of the host every
time the terminal sends a byte across the net. (That is, you
do not want to “nickel-and-dime” the host to death!) On
the other hand, you certainly would not want to turn on a
multimegabit per second host I/O channel and try to feed
it to our low-speed terminal. (That is, you do not want to
“hose” the terminal to death!) For indeed, the terminal will
not take data at the I/O channel speed, but rather it will
take them out at the low- speed rate it can handle, and the
network will get totally stuffed with a huge data backlog
very quickly. (And the network is a very expensive medium
to be used for storage!) The point is that you must protect
the terminal from the host, the host from the terminal, and
the network from both of them!

The way to provide this protection is to throttle the input
flows at the boundary of the network. This is called “flow
control.” There are a number of ways in which one can
throttle the flow through a network. We will discuss a few
of them here. First, there is the simple procedure of setting
a maximum rate at which a user may input data; this is
called rate flow control. A second method is to allow the
user to input data in blocks by turning the user on and off

in some fashion; this is called batch flow control. These two

are really simple and unsophisticated methods.

More common methods for controlling the flow permitted
between two communicating processes are based on a
window or token control scheme as follows. Let us begin
with window flow control. In Fig. 6 we show two time axes

each broken into numbered blocks (which correspond to .

numbered messages). The lower time axis shows the history
of messages which have been transmitted into the network.
Each solid block identifies a message which has indeed
been transmitted. Each cross-hatched block corresponds to
messages which are waiting at the source but which are
being held back from entering the network due to the flow
control procedure. The upper time axis shows the history
of messages which have been end-to-end acknowledged;
that is, the source has been informed that the message was
delivered. The solid blocks identify those which have been
acknowledged. We note that all messages up to message
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HOST

Fig. 7. Token flow control.

n have been acknowledged; message n + 1 is the oldest
message not yet acknowledged. In window flow control,
we are allowed to transmit up to W — 1 messages into the
network beyond the first unacknowledged message. Now,
when the acknowledgment for message n + 1 eventually
arrives, then we are allowed to advance the window by 3
and may then transmit messages n + 1, n + 2, and n + 3.
By selecting the value of W, and by adjusting the speed
with which acknowledgments are returned, we can clearly
control the flow.

In Fig. 7, we show how a “permit” or “token” flow control
scheme works. Here we see a flow between a terminal and
a host. We note that there are three messages “in flight”
toward the host; messages are represented by rectangles.
Note that three messages are waiting at the source, but are
not allowed into the network because the rule is that a
message may not enter the network until one of W “free”
tokens (permits) appears at the source terminal. Once a free
token appears, it may be attached to a waiting message
(at which time the token is marked as “busy”) and then
the two travel across the network to the destination. Once
a message (with its token) arrives at the destination, the
message is stripped off and delivered to the destination, the
token is released (and marked “free”) and then migrates its
way back to the source to be reused, etc. In the figure, we
see one message that has just arrived, and two free tokens
migrating back to the source.

How do these two, schemes differ? The answer is that
in window flow control, the “tokens” must be used in
sequential order (mod W); for example, we see that five
tokens have already arrived at the source (the acknowledged
messages beyond n), but cannot be used because token n+1
(mod W) must be used next. Both of these schemes are used
widely in today’s packet networks. The schemes we just
described control the flow for a given process-to-process
pair. Another method, known as Isarithmic Flow Control,
is simply token flow control where the number of tokens
in the entire network are shared among all communicating
pairs in some fashion [16]; the problem with this scheme
is that there is a major problem in ensuring that the tokens
migrate to needy sources in a reasonable and fair fashion.
For further discussion of flow control methods, the reader
is referred to [9] and [12].

C. Flow Control Analysis and Design Issues

It turns out that routing procedures are relatively easy to
design, but are hard to analyze in a dynamic environment.
On the other hand, flow control procedures are difficult
to design and are also difficult to analyze. In fact, control
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procedures in general tend to cause catastrophic failures
in networks (some of which have been reported in the
public newspapers over the past few years!). The reason
for this is that the logic used to provide the control tends
to be extremely complex, and the complexity leads to logic
errors and thus to system crashes. Most large systems suffer
from this problem, and the problem is especially insidious
because the failures are hard to predict, and typically they
lie latent in networks for years before the “right” conditions
arise which trigger them. Such is the nature of any complex
system.

In the window and token flow control procedures, we
note that there is a fixed number of tokens flowing between
source and destination. Thus one naturally looks to the
theory of closed queueing networks [4], [9], [17] to provide
an analytically tractable model. Fortunately, this theory
has been fairly successful in allowing one to calculate
the throughput for networks using such flow control. In
addition, the theory of Petri Nets allows one to include
timing constraints in the model, and has also been found to
be effective in calculating throughput [18].

Rather than going into the details of the queueing network
analysis, we prefer to focus on some of the system level
tradeoffs to see how they might dictate our design philos-
ophy. Specifically, we see that in any computer network,
one is concerned with three competing performance mea-
sures: throughput, response time. and loss (or blocking). Of
course, one would like to maximize the first and minimize
the last two of these quantities. This is the tradeoff we wish
to explore. These various quantities are shown in Fig. 8. We
note that T is the mean response time of the network, and
~ is the throughput carried by the network. In addition, we
let A denote the offered input traffic rate to the network.
Furthermore, in the figure, we have shown the network
capacity as o (messages per second).

Note that some of the offered traffic is “lost” due to
the flow control scheme; this amount is simply A — ~.
Let us first focus on this, the flow control function v(A);
that is, how much traffic v does the network carry when
it is offered an amount A? If throughput were our only
consideration, then the ideal situation would be v = A and
we would have no lost traffic. However, since the network
has a maximum capacity of ~,, we see that the “ideal”
flow control function is that shown in Fig. 9. Below the
input rate of ~,, we have no loss, and beyond that point,
we have the minimum possible loss, namely, A — . Also
shown in the figure are other more realistic functions. For
example, if we apply no flow control at all. then the “free-
flow™ curve is often the one that occurs. In this case. we see
that for low input rates, we achieve nearly the ideal, but as
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Fig. 9. The flow control function.

the load increases, we reach a peak and then begin to fall
off as more load is applied; that is, as we push harder. we
get less throughput! Eventually, these uncontrolled schemes
can drive the system into a situation of very low throughput,
or even zero throughput (also known as a deadlock). Such
behavior may be found in systems other than networks. for
example, thrashing in paged memory systems, traffic snarls
on highways and city streets, water flowing out of a vessel,
etc. Such a degradation is usually caused by the fact that
some system resource is being wasted; in our case, it often
is due to unnecessary retransmissions, or unnecessarily Jong
paths for traffic, or buffering problems, etc. An alternative
is to be extremely conservative in admitting traffic, in which
case we usually achieve the behavior shown in the figure
where we lose lots of traffic in light load, but do well as
the load increases. On the other hand, if we introduce a dy-
namic flow control scheme (such as the throttling schemes
discussed earlier), then we often achieve the behavior as
shown for that case in the figure. Here we see that we do
not do badly at low loads, and certainly do continue to
increase throughput as we increase load, approaching the
maximum network throughput fairly rapidly.

Now let us get to the basic tradeoffs. We begin with the
tradeoff between throughput, () and the mean response
time, T(v())). Clearly, we wish to have lots of through-
put and small delay; unfortunately, these cannot both be
achieved simultaneously, and so we wonder where is the
correct “operating point” for the system. A quantity known
as “power” (P) has been studied which combines these two
performance variables into a single measure. and is defined
as throughput divided by delay, namely

P =~+N)/T (). 14

We wish to find that optimum value of A which maximizes
P. It is easy to show [19] that this value is such that

T(y(A)/(A) = dT(v(A))/dy(A). (15)

That is, optimum power occurs when the input is such that
the derivative of response time with respect to throughput
is exactly equal to the value of response time divided by
throughput. This situation is shown in Fig. 10 where we
show an arbitrary response time versus throughput profile.
In this figure, we also show that straight line out of the
origin which has the smallest slope and which is tangent
to the curve. The point of tangency defines the optimum
operating point (i.e., it maximizes power). We note that
the slope of this straight line is exactly the inverse of the
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power; thus it is clear that we seek the minimum slope
line that touches the curve. Note that this result is good for
any flow control function () and for any response time
function T'.

If the response time profile had a sharp knee (similar to
the curve shown in Fig. 3, then the optimum operating point
would have been at v*, namely, the “knee” of the curve.
This corresponds to exactly where your intuition would tell
you to operate since it provides minimum response time and
maximum throughput. In more general cases, the optimum
power point essentially identifies the knee of the curve.

If we apply this principle of maximum power to a
simple M/M/1 queueing system, we find that the optimum
operating point is at p = 1/2 (i.e., vopr = 7/2.) At
this point, the response time is twice its minimum (the no-
load delay) and the throughput is half its maximum. More
importantly, N, the average number of customers in the
system at this point is exactly N = 1. Moreover, whereas
the optimum value of p changes for the M/G/1 queueing
system as a function of the general service time, it remains
the case that optimum power occurs when N = 1! Now, let
us consider a simple single-node queueing system in which
you have complete control over how messages (customers)
enter the system; suppose you were asked to find that input
control scheme which maximizes power for the system.
The obvious answer is that control policy which allows
exactly one message in the node at a time, and only when
that message leaves would you insert the next message. Of
course, we cannot control traffic in so simple a fashion in
a real system. What is really interesting is that our analytic
result above says that we should operate the system at a
load such that on average we should have one customer in
the system! Thus our analytic result matches our intuitive
reasoning very well.

This result carries over very nicely to the case of com-
puter networks. It states that the optimum number of
messages in flight in an n-hop path through the network
should equal exactly = messages (i.e., one per hop). More-
over, if we ask what should be the optimum value of the
window W in an n-hop path using token flow control, then
once again, we find the answer is W = n.

One can also include the effect of loss in the definition
of power. As shown in [20], it is still the case that the
optimum operating point is exactly that point where our
“deterministic reasoning” would tell us it should be. In
fact, this result extends to much more general definitions of
power where the only requirement is that the power be an

KLEINROCK: MODELING AND ANALYSIS OF COMPUTER NETWORKS

increasing function of throughput as well as a decreasing
function of both delay and loss.

V. GIGABIT NETWORKS

As we enter the 1990’s we find that we are rapidly
moving into a world of gigabit per second networks. We
must ask ourselves if gigabits represent just another step
in an evolutionary process of greater bandwidth systems,
or, if gigabits are really different? In the opinion of this
author, gigabits are indeed different, and the reason for this
difference has to do with the effect of the latency due to
the speed of light.

Let us begin by examining data communication systems
of various types. It turns out that there are a few key
parameters of interest in any data network system. These
are:

1) C= capacity of the network (megabits per second:

MBPS)

2) b = number of bits in a data packet

3) L = length of the network (miles).

It is simplest to understand these quantities if one thinks
of the network simply as a communication link. One can
combine these three parameters to form a single critical
system parameter, commonly denoted as a, which is defined
as:

a=5LC/b (16)

This parameter is the ratio of the latency of the channel
(i.e., the time it takes energy to move from one end of the
link to the other) to the time it takes to pump one packet
into the link. It measures how many packets can be pumped
into one end of the link before the first bit appears at the
other end [21]. The factor 5 appearing in the equation is
simply the approximate number of microseconds it takes
light to move 1 mi.> Now, if we calculate this ratio for
some common data networks, we find the values shown in
Table 1: Note the enormous range for the parameter a. At
one extreme, namely, local area networks, it is as small as
0.05, while at the other extreme, namely a cross-country
gigabit fiber optic link, it is as large as 15 000. This is
a range of nearly six orders of magnitude for this single
parameter!

We see that a grows dramatically when we introduce gi-
gabit links. So we naturally must ask ourselves if networks
made out of gigabit links are different in some fundamental
way from those made out of kilobit or megabit links. There
are two cases of interest to consider. First, we have the case
that a large number of users are each sharing a small piece
of this large bandwidth. In this case, it is fairly clear that
to each of them, a gigabit network looks no different than
today’s networks.

However, if we have a few users each sending packets
and files at gigabit speeds, then we do see a change in
behavior and we do run into new problems. At these speeds,

2Throughout this paper we make the simplifying assumption that light

propagates in a fiber optic channel as quickly as it propagates in free
space.
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Table 1  THE ENORMOUS VARIATION IN THE RATIO ¢ = PROPAGATION DELAY/PKT TX TimE
Capacity C' PKT Length (b) Prop Delay (1) e
(MBPS) () Ratio "«
Local-area net 10.00 5 0.05
Wide-area net 0.05 20 000 1.00
Satellite 0.05 250 000 12.50
Fiber link 1000.00 15 000 15 000.00
ONE
MEGABIT ONE
MEGABIT
J— \L?‘z ,/?
. T2
— [
NP hf?—(vl
TN

Fig. 11.  Transmitting a [-Mb file across the country

ONE
MEGABIT

I

Fig. 12. Transmitting over a 64 KBPS line.

a gets very large. To see the effect of this change. let us
consider the following scenario. Assume we are sitting at
a terminal and wish to send a 1-Mb file across the United
States to some remote computer as shown in Fig. 11.

Now, if the speed of the communication channel we have
available is 64 kb/s—KBPS (as in. say, an X.25 packet
network), then, as shown in Fig. 12, the first bit of this
transmission will arrive at the East Coast computer after
approximately 1000 b have been pumped into the channel.
Thus we see that the channel is buffering roughly 0.001 of
the message: that is, there is 1000 times as much data stored
in the terminal’s buffer as there is in the channel. Clearly,
if we had a higher speed channel, the time to transmit our
1-Mb file could be reduced. That is, we can benefit from
more bandwidth.

Thus let us now increase the speed of the channel and use
a T1 channel (1.544 MBPS). In Fig. 13 we show this new
configuration. Now we find that the terminal is buffering
roughly 40 times as much data as is the channel. Once
again, we see that we can benefit from more bandwidth.

Let us now increase the channel speed to a gigabit
channel; in particular, we will assume a 1.2-Gb/s—GBPS
link (the OC-24 SONET offering). This case is shown
in Fig. 14 where we see the entire 1-Mb file as a smail
pulse moving down the channel! Indeed, the pulse occupies
roughly only 0.05 of the channel “buffer.” It is now clear
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Fig. 13. Transmitting over a 1.544 MBPS TlI line.

Fig. 14. Transmitting over a 1.2 GBPS OC-24 linc.

that more bandwidth is of no use at all in speeding up the
transmission of the file: it is the latency of the channel that
dominates the time to deliver the file!

Therein lies the fundamental change that comes about
with the introduction of gigabit links into nationwide net-
works. Specifically, we have passed from the regime (of
pre-gigabit networking) in which we were bandwidth lim-
ited, to the new regime of being latency limited in the
post-gigabit world. Things do indeed change (as we shall
see below). The speed of light is the fundamental limitation
for file transfer in this regime! And the speed of light is
a constant of nature which we have not yet been able to
change!

In the considerations above, we assumed that our file
was the only traffic on the link. Let us now consider the
case of competing traffic with smaller packets. Indeed.
let us now assume that we have the classical queueing
model of a Poisson stream of arriving messages requesting
transmission over a communication link. where each mes-
sage has a length which is exponentially distributed with
a mean of 128 bytes (i.e.. an M/M/I queueing system).
If, as usual, we let p denote the system utilization factor.
then p = A(1024/C) where A is the arrival rate (messages
per microsecond) and C' is the channel capacity (MBPS).
In this situation, we know that T, the mean response time
(seconds) of the system (i.e., the mean time from when the
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message arrives at the tail of the transmit queue until the
last bit of the message appears at the output of the channel,
including any propagation delay), is given by
T= 1024/C ‘1
1-p
where 7 is the propagation delay (i.e., the channel latency)
in seconds.

Let us ask ourselves if gigabit channels actually help in
reducing the mean response time 7. In Fig. 15, we show
the mean response time (in milliseconds) versus the system
load p for three different channel speeds. In this figure, we
assume that the speed of light is infinite, and so 7 = 0. The
channel speeds we choose are the same as those considered
above, namely 64 KBPS, 1.544 MBPS, and 1.2 GBPS. We
note a significant reduction in 7" when we increase the speed
from 64 KBPS to 1.544 MBPS; thus the faster T'1 channel
helps. However, note that when we go from 1.544 MBPS
to 1.2 GBPS, we see almost no improvement. (The only
region in which there is an improvement with gigabits is
at extremely high loads, a situation to be avoided for other
reasons.) As far as response time is concerned, gigabits do
not help here!

One might argue that the assumption of zero propagation
delay has biased our conclusions. Not so; in Fig. 16 we
show the case with a 15-ms propagation delay (i.e., the
propagation delay across the USA) and we see again that
gigabits do not help.

We can sharpen our treatment of this latency-versus-
bandwidth discussion as follows. Let us assume that we
have an M/M/1 model as above, where the messages have
an average length equal to b bits. Assume we wish to
transmit these files across the United States, as in the

an
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Fig. 17. The bandwidth-latency tradeoff for a 1-Mb file.

earlier figures. Now, as can be seen from (17), there are
two components making up the response time; namely, the
queueing-plus-transmission time delay (the first term in the
equation) and the propagation delay (7). In this paper, we
have been discussing the relative size of each of these and
we referred to regions of bandwidth-limited and latency-
limited systems. Let us now make those concepts more
precise. We choose to define a sharp boundary between
these two regions. In particular, we define this boundary
to be the place where the two terms in our equation are
exactly equal; namely, where the propagation delay equals
the queueing-plus-transmission time delay. From (17) we
see that this occurs when the bandwidth of the channel
takes on the following critical value:

b

Ccrit a=p)r (18)
In Fig. 17, we plot this critical value of bandwidth (on a log
scale) versus the system load p; we have drawn this plot
for the case of 7 = 15 ms and a message length of 1 Mb.
Above this boundary, the system is latency-limited which
means that more bandwidth will have negligible effect in
reducing the mean response time T . Below this boundary,
the system is bandwidth-limited which means that it can
take advantage of more bandwidth to reduce 7. Note for
these parameters, that the system is latency-limited over
most of the load range when a gigabit channel is used;
this means that for these parameters, a gigabit channel is
overkill so far as reducing delay is concerned.

We repeat this plot in Fig. 18 for a number of different
message sizes. Without labeling the regions, the same
comments apply, namely, systems above the curve are
latency-limited, and below they are bandwidth-limited. We
note that gigabit channels begin to make sense for messages
of size 10 Mb or more, but are not helpful for smaller file
sizes. This comment about message size refers to the file
size that the user application generates; the fact that ATM
uses 53 byte cells has little to do with this comment.

Figures 17 and 18 apply to the case of a cross-country
link (i.e., propagation delay of roughly 15 ms). For other
than 7 = 15 ms, the critical bandwidth which defines the
boundary is given from (18).

There are a number of other issues to be addressed
in gigabit nets. Consider the example from the previous
section, namely, a gigabit link spanning the United States.
Suppose we start transmitting a file a time ¢=0. Roughly 15
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Fig. 18. The bandwidth-latency tradeoff for various size files.

ms later, the first bit will appear across the country. Now
suppose that the receiving process decides immediately
that it cannot accept this new flow which has begun. By
the time the first bit arrives, however, there are roughly
15 million bits already in the pipe heading toward this
receiving process! And, by the time a stop signal reaches
the source, another 15 million bits will have been launched!
It does not take too much imagination to see that we have
a problem here. It is basically a congestion control and
flow control problem as discussed in Section IV-B. Clearly,
a closed control feedback method of flow control is too
sluggish in this environment (due, once again, to latency).
Some other forms of control must be incorporated. For
example. one could use rate flow control in which the user
is permitted to transmit at a maximum allowable rate.

Another issue has to do with the maximum attainable effi-
ciency that one can obtain by taking advantage of statistical
multiplexing of bursty sources in a gigabit environment.
If we have a large number of small bursty sources, then
statistical multiplexing takes exquisite advantage of the
Law of Large Numbers [4], and allows one to drive these
channels at very high efficiencies. However, if we have
a small number of large sources, then the multiplexing
docs not usually lead to very high efficiencies. This is
because statistical smoothing of a small number of sources
is not sufficient to bring about the advantages of statistical
multiplexing. Furthermore, if we have a large number of
nonhomogenous sources, one must calculate the effective
number of such sources in order to calculate the efficiency
to be expected from multiplexing [22].

VI.  CONCLUSIONS

In this paper. we have taken a tour over the analytic
landscape of computer networks, flying fairly high over the
terrain. The purpose was to give the reader the understand-
ing as to the approximate state of the art in performance
modeling and analysis of computer networks. The reader
should be aware that currently there is a great deal of effort
going into network modeling and analysis. The driving
force behind this effort has been the move toward broad-
band networks. These networks involve parameter ranges
and tradeoffs that we have not seen before. The switch
has become the economic and performance bottleneck of
the system. Thus we are in the process of inventing new
protocols and architectures to give us access to the very high
bandwidths afforded us by fiber optic channels. As a result,
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these new protocols and architectures require modeling,
analysis and design.

We have introduced some of the basic modeling and
evaluation tools for networks. We have glimpsed some of
the tradeoffs that must be understood. And most of all, we
have just scratched the surface of gigabit networks; they are
not yet understood. There is currently a significant effort
underway to develop the modeling and analytic tools to
provide this understanding.
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